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Stochastic analysis of a non-normal dynamical system mimicking a laminar-to-turbulent
subcritical transition
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The effects of stochastic perturbations on a non-normal dynamical system mimicking a laminar-to-turbulent
subcritical transition are investigated both analytically and numerically. It is found that a nonlinear dynamical
system with non-normal transient linear growth is very sensitive to the presence of weak random perturbations.
The effect of non-normality on the exit probability from the zero fixed point is analyzed numerically for small
values of the noise intensity parameter. It is found that an increase in the intensity of the noise, or a decrease
of the non-normality parameter leads to qualitative changes in the behavior of the trajectories that can be
interpreted as noise-induced phase transitions. By using tfieritala and the adiabatic elimination procedure
a stochastic equation governing the slow evolution of the energy of the non-normal system is derived.
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I. INTRODUCTION du
T —2su+(U?+v?)Y%,

The study of non-normal transient linear growth mecha-
nisms has gained much attention, both experimentally and do
theoretically, during the past decade, especially after the —
seminal work of Trefetheet al.[1]. The main reason is that dt
this explains the onset of turbulence when the laminar flow

. . . . where e is a small parameter, chosen in analogy with the
passes to a turbulent regime without linear instabll&y-6]. ; . .
. . . . i inverse Reynolds number. This dynamical system has been
Non-normality of the linearized Navier-Stokes evolution op-

suggested by Trefetheat al. [1] as a simple model explain-

erator leads to the transient growth Of. vellocny dlsturbancegng the subcritical transition of the Navier-Stokes equations.
even thou.gh the.steady mean flow is Imea_rl_y s.table. Thq’t should be noted that several other low-dimensional models
pqnllnear |nteract|.ops Ie_ad to a further a_mphﬁcatlon of thepave been proposed to explain the onset of a turbulent re-
initially small but finite disturbances. Nonlinear terms play agime for high Reynolds numbersee, for example, Refs.
vital role in the redistribution of energy to those disturbanceq2,4’7])' The dynamical systerfl) has three stable equilib-
which exhibit a linear transient growth. Thus the transition torjym points including (0,0). The main feature of systém
turbulence is not a consequence of the linear instability ofs that fors <1 the linearized evolution operator for the fixed
the stationary laminar flow, rather, it is the result of the in-point (0,0) is a highly non-normal matrix that leads to a large
teraction of the non-normality producing transient amplifica-transient growth o (t) prior to an eventual exponential de-
tion of velocity perturbations and energy-conserving nonlin-cay. It can easily be found, that for the nonzero initial con-
earities driving the system into the basin of attraction ofditions u(0)=¢su, andv(0)=0, the solution of the linear-
turbulent regime. A comprehensive review of the up-to-datdézed equations is of the form(t)=ug(e *'—e 2, u(t)
results on such interactions and the resulting onset of shearsuye™ 2°'. The functionv (t) achieves a maximum of order
flow turbulence can be found in the review by Grossmanrone, on a time scale of order 1. Furthermore, although
[7] and recent book by Schmid and Henning$8h both eigenvalues are negative,E —&;\,= —2¢), a finite
Several theoretical studies have been devoted to stochafiuctuation with exceedingly low amplitude can excite the
tically forced dynamical systems involving a non-normal op-transition from the fixed point (0,0). The main problem here
erator[9,10]. It has been found that these systems have ais to find the minimum amplitude of all fluctuations capable
extraordinary sensitivity to random perturbations, as a conto excite this transition and its dependence on the parameter
sequence, it leads to a great amplification of the variances: of the forme“. The threshold exponet is found to be 3
However, most research has been focused on linear nofi]. This tells us that the basin of attraction of (0,0) shrinks
normal systems. The aim of this paper is to study the intervery rapidly ase—0.
action between the following three factors: nonlinearity, non-
nqrmality, and stochastics. Ir_1 order to gain some insight inFo Il STOCHASTIC NON-NORMAL DYNAMICAL SYSTEM
this problem, we shall examine the role of external noise in
the non-normal dynamical system One of the purposes of this paper is to understand how
random perturbations can affect the dynamics of the non-
normal systerm(1). We simply add two generic uncorrelated
* Author to whom correspondence should be addressed. Gaussian white noise terms to the right hand side of(Eq.

=—gv+u—(u?+ovd) ¥, (1)
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The dynamical systertl) can then be written in the form of P
the following stochastic differential equatiofikl]:

du=[—2eu+(u?+0v?) Y2 ]dt+(26)Y2dW, (1),

[+X:1 A

dv=[—ev+u—(u+ov)YU]dt+(26)YdW,(t), (2)

where W;(t) and W,(t) are the uncorrelated standard ost
Wiener processes. Here we assume for simplicity that the
intensity of the noise parametéris the same for both sto-
chastic terms. o4r

For deterministic systenil) only small but finite initial
perturbations can escape from the basin of attraction for ¢
fixed point at the origin. In this case the main problem is to **[
answer the question “What is the threshold exponerfor
transition to turbulence?f4]. In the stochastic case the key | ) ) .
question is "What is the long-time effect of adding noise -* -1 - 0
terms to the nonlinear non-normal dynamical system?” Due £ 1. The exit probabilityp, as a function of non-normal
to the highly sensitive way that the non-normal systems argarameter e=2%. Curves A, B, and C correspond t@
affected by random perturbations we can expect that theesx 1075, 2x 1074, 1073,
presence of noise in the right hand side of Ef.may lead
to a transition, even for zero initial conditions S o S s s

u(0)=0, v(0)=0. 3) M=% M g2 M s g3 ©

We believe that this is physically significant since in practi-From Eq.(5) we can see that due to the non-normality of
cal situation random fluctuations may often be what inducesystem(4) ase—0 for constan®, all second moments tend
the subcritical transition. To illustrate the stochastic sensitivto infinity. The stationary second momemt; exhibits the

ity of non-normal systen2), consider its linear approxima- highest degree of sensitivity. Even for a very weak noise, say

tion 5~¢? thenmz—» ase—0.
B u It is instructive to investigate the effect that non-normality
du=—2eudt+(26) 2dWy(t), has on the exit probability from the zero attraction point.
This problem is closely related to the famous “Kramer’s exit
dv=(—sv+u)dt+(26)dWy(t), (4 problem” that concerns the escape of random trajectories of

a stochastic dynamical system from the domain of attraction
with zero initial conditions(3). This is a relatively simple of the underlying deterministic dynamical systdi,12.
stochastic dynamical system in which the varial(€) is the  We have calculated numerically the empirical exit probabili-
Ornstein-Uhlenbeck process with well-known statisticalties of random trajectories from the neighborhood of the zero
properties, whilev(t) is the non-Markov random process point U={(u,v):u?+v?<0.01 up tot=10. The results in
whose properties can be easily fouftd]. Very important  Fig. 1, demonstrate that even for a very small intensity of
statistical characteristics of systef#) are the second mo- noise (5=10"2) the exit probabilityp, is close to unity. In
ments, since they mimic the kinetic energy of fluid flow. Oneparticular, fore =2~ 5~0.03 and5=5x 10"° the exit prob-
can find the following explicit representations for them: ability is greater than 0.6. Fai=2x 10"* the probabilityp,
is greater than 0.8. Fat= 102 this probability is very close
to one. Regarding the measure of smallnesg,oit can be
any of second moment$), since they are proportional #

It should be noted that it would be difficult to measure the
25 5 5 parameters directly [13].
my(t)=Eu(t)v(t)=— —2e‘3€‘+ —2e‘48‘+ — An analytical treatment of the stochastic dynamical sys-
3e 28 6e tem (2) is rather difficult, although some approximations are
possible, and indeed usefiglee Eq(14) for the slow varying
S5 O 48 ) energy of the non-normal systénwe have performed simu-
m3(t)EEuz(t):( - g) lations of random trajectories of E¢R) for different values

of & and 6. Our numerical results show that either by in-

s S creasing the intensity of noisé or by decreasing the non-
+—+—. normality parameteg, stochastic systeni2) undergoes a

e 6g° series of phase transitions. We have found three qualitatively
_ different regimes. For a fixed value ef this phenomenon

The limiting valuesm;=lim___m;(t) are can be interpreted as a noise-induced transition. The detailed

1)
—(1_9_48t),

my(H)=Eu’(t)= s
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FIG. 2. The stochastic trajectory fer=10"2, §=10"4; initial FIG. 4. The stochastic trajectory fer=10"1, 5§=103.

conditions:u(0)=0 andv(0)=0.
[13]. Figures 4-6 illustrate the qualitative changes in the

discussion of such transitions and many example from physpehavior of the trajectories for the fixed value &10 3
ics, chemistry, biology, etc., can be found in the excellen@nd various values of the non-normal parameter10 *
book [13]. (Fig. 4, e=10"2 (Fig. 5), ande =102 (Fig. 6). For a fixed

Figures 2 and 3 illustrate these transitions in terms ofvalue of the noise intensity parameig&rone can also speak
stochastic trajectories of the non-normal dynamical systenaf non-normality induced phase transition as well.
for e=10"2 and 6=10 * (Fig. 2, 6=10 2 (Fig. 3. For
very small values o6(56< 10_12), we have observed that the IIl. UNDERLYING HAMILTONIAN STRUCTURE
random trajectory is concentrated around the equilibrium
point at (0,0). AsS increases, the trajectory then begins to  The behavior of the trajectories when the values a@ind
become more concentrated in the vicinity of one of the non4 are smalle.g., Fig. 6 can be explained by the existence of
trivial fixed points (Fig. 2. Further increase of the noise @ Hamiltonian structure in Eq(2). If we introduce the
intensity parametes leads to the stochastic orbits containing Hamiltonian function
all three fixed pointgFig. 3). It should also be noted, that
these noise-induced transitions can also be analyzed in terms

of the extrema of the stationary probability density(u,v) H(u,v)=

1 1
§(U2+02)3/2*§U2, (6)

FIG. 3. The stochastic trajectory fer=10"2, §=10 2. FIG. 5. The stochastic trajectory fer=10"2, 5§=103.
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FIG. 6. The stochastic trajectory fer=10"3, 6=10"3, FIG. 7. The phase portrait of the conservative sys(&m
then dynamical systerf2) can be rewritten as connection. The situation is more complicated in the pres-

ence of dissipative terms. An addition of the two terms
—2eu and —ev changes the direction of the vector field in

an alternative way to that of the dissipative Duffing equation.
Of course, the global effect is to destroy the closed orbits. In

aH
du=—2eudt+ 5o|t+ (28)Y2dW,(t),

oH o particular, the fixed point (0,0) becomes linearly stable, but
dv=—evdt——dt+(26)dWa(1). (7)  the width of its basin of attraction decreasessag1,6].
I_n the limitse—0 and5—0, system(7) becomes conserva- IV. STOCHASTIC DIFFERENTIAL EQUATION
tive, FOR THE ENERGY
du oH dv dH In a further analysis on the effect of randomness and dis-
at - ov dt . au’ (8)  sipation, it is of interest to consider the reduced equation for

energy. In the general case+0,6+0), the energy of the
and, thereforeH(u,v)=E=const. The phase trajectories SysttmE=H(u,v) is not a constant, rather a random func-
u(t) ando(t) of Eqg. (8) move along the level set tion of time. If we apply the ftdormula forE=H(v,u) [11]
we can obtain the governing equation for the energy
C(E)={(u,v):H(u,p)=35(u?+v?)3-Ju*=E}, (9
oH oH #H  °H

with the speed dE=| —2e—u—s—0v+5—+5—|dt
Ju Jv Ju? Jv?

v _ JH oH 10

(uv)= S0l (10

1/2& l/Zﬁ
+(28) V2 dWa (1) + (28) 2~ dWs(1). (12)

It follows from the existence of the Hamiltonidf) that the
trajectories are periodic, and that the period of the oscillait is clear that for small values of both the dissipation param-
tions T(E) can be found to be etere, and the noise parametér after some transient period
of time, the phase trajectories of Ed) will be very close to
the level curvesC(E). There are three different families of
periodic orbits separated by the saddle connectsae Fig.
7). Let us denote those components of the level set by
where the integral is taken along the level cur@d€). Ci(E) (i=1,2,3). The overall dynamics of Eg2) can be

In Fig. 7 we plot the one-parameter family of curves gen-viewed as a composition of a fast motion along the level
erated by Eq(9) that gives us the full phase portrait of the curve C;(E) and of a slow motion normal to the energy
conservative syster(8). There are three equilibrium points levels with the possible transitions, for example, fréq(E)
at (0,0) and (-1,0). One can see that the phase portrait igo C5(E). In this case one can eliminate the fast motion to
similar to that of the Duffing equation without dissipation. derive an equation for the slowly varying energyt). It is
Linearization of Eq.(8) at (1,0) and 1,0) gives us the well known [11] that the fast variables can be eliminated
period 2. While moving out, the periodic trajectories have when there exists a stationary distribution function, indepen-
longer periods and tend to infinity as we approach the saddldent of small parameters. Let us introduce the following nor-

T(E)=J’ IV(u,v)|~ds, (11
C(E)
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malized measure corresponding to the fast mdtiah along V. CONCLUSIONS AND DISCUSSION

the energy level curve; (E): In summary, we have investigated the effects of the addi-

1 tive Gaussian perturbations on a non-normal dynamical sys-
pi(Uv)=0————. (13)  tem mimicking a laminar-to-turbulent subcritical transition
Ti(E)[V(u,)] both analytically and numerically. We have derived explicit
representations for the second moments and found that the
nonlinear dynamical system with a non-normal transient lin-
ear growth is highly sensitive to the presence of weak ran-
dom perturbations. We have calculated numerically the em-
pirical exit probabilities of random trajectories from the
dE dw neighborhood of a zero fixed point. We have found that even
—=S(E)—D,(E)+;(E) —, (14)  for very small values of the intensity of noise parametér (
dt dt =10"%) the exit probability is close to unity. We have also
found that an increase of the intensity of noise parameter, or
a decrease of the non-normality parameter, will lead to cer-
tain qualitative changes in the behavior of the trajectories.
IV(u,0)|~ds This can be interpreted as noise-induced p.ha_se fcransitions.
' ' By using the ltoformula and the adiabatic elimination pro-
(15  cedure, we have derived a stochastic equation governing the
slow evolution of the energy of the system.
while the rate of the removal of energy by dissipation can be We believe that the study of impact of noise on non-
written as normal dynamical system is physically significant since in
practical situation random fluctuations may often be what
induce the subcritical transition in fluid flow. The transition
appears to become essentially random event. The generic
(16) feature of laminar-to-turbulent transition in shear flow is that
it does not have a critical, reproducible Reynolds number
The intensity of noise is [7,8]. Regarding mode{2), it should be noted that its non-
linearity is quite different from the Navier-Stokes one, there-
2 fore, it does not really describe the laminar-to-turbulent tran-
oi(E)= WJC(E)lV(U,deS- (17 sition in fluid flow. However, it gives the general features of
' : such transition involving transient growth, nonlinear, and
The details concerning the derivation of the above formulgStochastic mode interactions. Stochastic dynamic sy$&m
can be found in Ref;14]. For very small values of ands IS fundamentally different from the deterministic oii&)

most of the probability is concentrated on the level curvedVith only two degrees of freedom. We can regard E4.as

C.(E). We have in essence, a deterministic motion, withan€ffectivedynamical system with many degrees of freedom

speedV along the level curves. In general, we have the stol" which two variablesi andv play the role of order param-

chastically sustained oscillations for which the energy gen_eters, WP';G thde StOChZ‘St'ﬁ T‘O.'Sﬁ terms apprc()jxma'l:te or:her de-
erationS;(E) due to the noise and dissipati@)(E) are in grees of freedom and their influence anandv. Further
balance with the stochastic term, which intensityE) is a researph is needgd to identify the statistical characteristic of
function of energy itself. the noise terms in E¢2).

An extension of stochastic mod€2) to the distributed
case involving partial differential equations is now under
consideration. We consider the amplification of the mean- Useful conversations with John Dold are gratefully ac-
field scalar field due to local random perturbations, and subknowledged. S.F. thanks Parviz Moin and Heinz Pitsch for a
seqguent wave propagation into an unstable $tedelg. The  kind invitation to the Center for Turbulence Research, Stan-
purpose is to find the rate at which the local perturbationgord University. I.B. and L.R. have been partly supported by
propagate throughout the stochastically unstable state. RFBR Grant No. 2-01-96418ural.

The equation for the enerdy(t) can be derived as follows.
Let us multiply Eq.(12) by measuré€13), and integrate along
the level curveC;(E) [14]. The equation foE(t) then takes
the form of a one-dimensional SDE,

where the rate of energy supply due to the noise is

J°H . 9°H
au? gu?

_ 1)
Si(E)_Ti(E) Ci(E)

D.(E)= — 2&H +(9H \Y; ~1d
i )_Ti(E) - PR |V(u,v)|~*ds.
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