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Stochastic analysis of a non-normal dynamical system mimicking a laminar-to-turbulent
subcritical transition

Sergei Fedotov,1,* Irina Bashkirtseva,2 and Lev Ryashko2
1Department of Mathematics, UMIST—University of Manchester Institute of Science and Technology,

Manchester M60 1QD, United Kingdom
2Department of Mathematical Physics, Ural State University, Lenin Avenue, 51, 620083 Ekaterinburg, Russia

~Received 2 September 2002; published 30 December 2002!

The effects of stochastic perturbations on a non-normal dynamical system mimicking a laminar-to-turbulent
subcritical transition are investigated both analytically and numerically. It is found that a nonlinear dynamical
system with non-normal transient linear growth is very sensitive to the presence of weak random perturbations.
The effect of non-normality on the exit probability from the zero fixed point is analyzed numerically for small
values of the noise intensity parameter. It is found that an increase in the intensity of the noise, or a decrease
of the non-normality parameter leads to qualitative changes in the behavior of the trajectories that can be
interpreted as noise-induced phase transitions. By using the Itoˆ formula and the adiabatic elimination procedure
a stochastic equation governing the slow evolution of the energy of the non-normal system is derived.
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I. INTRODUCTION

The study of non-normal transient linear growth mech
nisms has gained much attention, both experimentally
theoretically, during the past decade, especially after
seminal work of Trefethenet al. @1#. The main reason is tha
this explains the onset of turbulence when the laminar fl
passes to a turbulent regime without linear instability@2–6#.
Non-normality of the linearized Navier-Stokes evolution o
erator leads to the transient growth of velocity disturbanc
even though the steady mean flow is linearly stable. T
nonlinear interactions lead to a further amplification of t
initially small but finite disturbances. Nonlinear terms play
vital role in the redistribution of energy to those disturbanc
which exhibit a linear transient growth. Thus the transition
turbulence is not a consequence of the linear instability
the stationary laminar flow, rather, it is the result of the
teraction of the non-normality producing transient amplific
tion of velocity perturbations and energy-conserving non
earities driving the system into the basin of attraction
turbulent regime. A comprehensive review of the up-to-d
results on such interactions and the resulting onset of s
flow turbulence can be found in the review by Grossma
@7# and recent book by Schmid and Henningson@8#.

Several theoretical studies have been devoted to stoc
tically forced dynamical systems involving a non-normal o
erator @9,10#. It has been found that these systems have
extraordinary sensitivity to random perturbations, as a c
sequence, it leads to a great amplification of the varian
However, most research has been focused on linear
normal systems. The aim of this paper is to study the in
action between the following three factors: nonlinearity, no
normality, and stochastics. In order to gain some insight i
this problem, we shall examine the role of external noise
the non-normal dynamical system
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1063-651X/2002/66~6!/066310~6!/$20.00 66 0663
-
d
e

-
s,
e

s

f
-
-
-
f
e
ar
n

as-
-
n
-
s.
n-
r-
-
o
n

du

dt
522«u1~u21v2!1/2v,

dv
dt

52«v1u2~u21v2!1/2u, ~1!

where « is a small parameter, chosen in analogy with t
inverse Reynolds number. This dynamical system has b
suggested by Trefethenet al. @1# as a simple model explain
ing the subcritical transition of the Navier-Stokes equatio
It should be noted that several other low-dimensional mod
have been proposed to explain the onset of a turbulent
gime for high Reynolds numbers~see, for example, Refs
@2,4,7#!. The dynamical system~1! has three stable equilib
rium points including (0,0). The main feature of system~1!
is that for«!1 the linearized evolution operator for the fixe
point (0,0) is a highly non-normal matrix that leads to a lar
transient growth ofv(t) prior to an eventual exponential de
cay. It can easily be found, that for the nonzero initial co
ditions u(0)5«u0 and v(0)50, the solution of the linear-
ized equations is of the formv(t)5u0(e2«t2e22«t), u(t)
5«u0e22«t. The functionv(t) achieves a maximum of orde
one, on a time scale of order«21. Furthermore, although
both eigenvalues are negative (l152«;l2522«), a finite
fluctuation with exceedingly low amplitude can excite t
transition from the fixed point (0,0). The main problem he
is to find the minimum amplitude of all fluctuations capab
to excite this transition and its dependence on the param
« of the form«a. The threshold exponenta is found to be 3
@1#. This tells us that the basin of attraction of (0,0) shrin
very rapidly as«→0.

II. STOCHASTIC NON-NORMAL DYNAMICAL SYSTEM

One of the purposes of this paper is to understand h
random perturbations can affect the dynamics of the n
normal system~1!. We simply add two generic uncorrelate
Gaussian white noise terms to the right hand side of Eq.~1!.
©2002 The American Physical Society10-1
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The dynamical system~1! can then be written in the form o
the following stochastic differential equations@11#:

du5@22«u1~u21v2!1/2v#dt1~2d!1/2dW1~ t !,

dv5@2«v1u2~u21v2!1/2u#dt1~2d!1/2dW2~ t !, ~2!

where W1(t) and W2(t) are the uncorrelated standa
Wiener processes. Here we assume for simplicity that
intensity of the noise parameterd is the same for both sto
chastic terms.

For deterministic system~1! only small but finite initial
perturbations can escape from the basin of attraction fo
fixed point at the origin. In this case the main problem is
answer the question ‘‘What is the threshold exponenta for
transition to turbulence?’’@4#. In the stochastic case the ke
question is ’’What is the long-time effect of adding noi
terms to the nonlinear non-normal dynamical system?’’ D
to the highly sensitive way that the non-normal systems
affected by random perturbations we can expect that
presence of noise in the right hand side of Eq.~1! may lead
to a transition, even for zero initial conditions

u~0!50, v~0!50. ~3!

We believe that this is physically significant since in prac
cal situation random fluctuations may often be what indu
the subcritical transition. To illustrate the stochastic sensi
ity of non-normal system~2!, consider its linear approxima
tion

du522«udt1~2d!1/2dW1~ t !,

dv5~2«v1u!dt1~2d!1/2dW2~ t !, ~4!

with zero initial conditions~3!. This is a relatively simple
stochastic dynamical system in which the variableu(t) is the
Ornstein-Uhlenbeck process with well-known statistic
properties, whilev(t) is the non-Markov random proces
whose properties can be easily found@11#. Very important
statistical characteristics of system~4! are the second mo
ments, since they mimic the kinetic energy of fluid flow. O
can find the following explicit representations for them:

m1~ t ![Eu2~ t !5
d

2«
~12e24«t!,

m2~ t ![Eu~ t !v~ t !52
2d

3«2
e23«t1

d

2«2
e24«t1

d

6«2
,

m3~ t ![Ev2~ t !5S 2
d

«3
2

d

« D e22«t1
4d

3«3
e23«t2

d

2«3
e24«t

1
d

«
1

d

6«3
.

The limiting valuesm̄i5 lim
t→`

mi(t) are
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m̄15
d

2«
, m̄25

d

6«2
, m̄35

d

«
1

d

6«3
. ~5!

From Eq. ~5! we can see that due to the non-normality
system~4! as«→0 for constantd, all second moments ten
to infinity. The stationary second momentm̄3 exhibits the
highest degree of sensitivity. Even for a very weak noise,
d;«2 thenm̄3→` as«→0.

It is instructive to investigate the effect that non-normal
has on the exit probability from the zero attraction poi
This problem is closely related to the famous ‘‘Kramer’s e
problem’’ that concerns the escape of random trajectorie
a stochastic dynamical system from the domain of attrac
of the underlying deterministic dynamical system@11,12#.
We have calculated numerically the empirical exit probab
ties of random trajectories from the neighborhood of the z
point U5$(u,v):u21v2<0.01% up to t510. The results in
Fig. 1, demonstrate that even for a very small intensity
noise (d51023) the exit probabilitype is close to unity. In
particular, for«5225'0.03 andd5531025 the exit prob-
ability is greater than 0.6. Ford5231024 the probabilitype
is greater than 0.8. Ford51023 this probability is very close
to one. Regarding the measure of smallness ofd, it can be
any of second moments~5!, since they are proportional tod.
It should be noted that it would be difficult to measure t
parameterd directly @13#.

An analytical treatment of the stochastic dynamical s
tem ~2! is rather difficult, although some approximations a
possible, and indeed useful~see Eq.~14! for the slow varying
energy of the non-normal system!. We have performed simu
lations of random trajectories of Eq.~2! for different values
of « and d. Our numerical results show that either by i
creasing the intensity of noised or by decreasing the non
normality parameter«, stochastic system~2! undergoes a
series of phase transitions. We have found three qualitativ
different regimes. For a fixed value of«, this phenomenon
can be interpreted as a noise-induced transition. The deta

FIG. 1. The exit probabilitype as a function of non-norma
parameter «522k. Curves A, B, and C correspond tod
5531025, 231024, 1023.
0-2
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discussion of such transitions and many example from ph
ics, chemistry, biology, etc., can be found in the excell
book @13#.

Figures 2 and 3 illustrate these transitions in terms
stochastic trajectories of the non-normal dynamical sys
for «51022 and d51024 ~Fig. 2!, d51022 ~Fig. 3!. For
very small values ofd(d,10212), we have observed that th
random trajectory is concentrated around the equilibri
point at (0,0). Asd increases, the trajectory then begins
become more concentrated in the vicinity of one of the n
trivial fixed points ~Fig. 2!. Further increase of the nois
intensity parameterd leads to the stochastic orbits containin
all three fixed points~Fig. 3!. It should also be noted, tha
these noise-induced transitions can also be analyzed in t
of the extrema of the stationary probability densitypst(u,v)

FIG. 2. The stochastic trajectory for«51022, d51024; initial
conditions:u(0)50 andv(0)50.

FIG. 3. The stochastic trajectory for«51022, d51022.
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@13#. Figures 4–6 illustrate the qualitative changes in t
behavior of the trajectories for the fixed value ofd51023

and various values of the non-normal parameter«51021

~Fig. 4!, «51022 ~Fig. 5!, and«51023 ~Fig. 6!. For a fixed
value of the noise intensity parameterd, one can also spea
of non-normality induced phase transition as well.

III. UNDERLYING HAMILTONIAN STRUCTURE

The behavior of the trajectories when the values of« and
d are small~e.g., Fig. 6! can be explained by the existence
a Hamiltonian structure in Eq.~2!. If we introduce the
Hamiltonian function

H~u,v !5
1

3
~u21v2!3/22

1

2
u2, ~6!

FIG. 4. The stochastic trajectory for«51021, d51023.

FIG. 5. The stochastic trajectory for«51022, d51023.
0-3
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then dynamical system~2! can be rewritten as

du522«udt1
]H

]v
dt1~2d!1/2dW1~ t !,

dv52«vdt2
]H

]u
dt1~2d!1/2dW2~ t !. ~7!

In the limits«→0 andd→0, system~7! becomes conserva
tive,

du

dt
5

]H

]v
,

dv
dt

52
]H

]u
, ~8!

and, therefore,H(u,v)5E5const. The phase trajectorie
u(t) andv(t) of Eq. ~8! move along the level set

C~E!5$~u,v !:H~u,v !5 1
3 ~u21v2!3/22 1

2 u25E%, ~9!

with the speed

V~u,v !5S ]H

]v
,2

]H

]u D . ~10!

It follows from the existence of the Hamiltonian~6! that the
trajectories are periodic, and that the period of the osci
tions T(E) can be found to be

T~E!5E
C(E)

uV~u,v !u21ds, ~11!

where the integral is taken along the level curvesC(E).
In Fig. 7 we plot the one-parameter family of curves ge

erated by Eq.~9! that gives us the full phase portrait of th
conservative system~8!. There are three equilibrium point
at (0,0) and (61,0). One can see that the phase portrai
similar to that of the Duffing equation without dissipatio
Linearization of Eq.~8! at (1,0) and (21,0) gives us the
period 2p. While moving out, the periodic trajectories hav
longer periods and tend to infinity as we approach the sa

FIG. 6. The stochastic trajectory for«51023, d51023.
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connection. The situation is more complicated in the pr
ence of dissipative terms. An addition of the two term
22«u and2«v changes the direction of the vector field
an alternative way to that of the dissipative Duffing equatio
Of course, the global effect is to destroy the closed orbits
particular, the fixed point (0,0) becomes linearly stable,
the width of its basin of attraction decreases as«3 @1,6#.

IV. STOCHASTIC DIFFERENTIAL EQUATION
FOR THE ENERGY

In a further analysis on the effect of randomness and
sipation, it is of interest to consider the reduced equation
energy. In the general case («Þ0,dÞ0), the energy of the
systemE5H(u,v) is not a constant, rather a random fun
tion of time. If we apply the Itoˆ formula forE5H(v,u) @11#
we can obtain the governing equation for the energy

dE5S 22«
]H

]u
u2«

]H

]v
v1d

]2H

]u2
1d

]2H

]v2 D dt

1~2d!1/2
]H

]u
dW1~ t !1~2d!1/2

]H

]v
dW2~ t !. ~12!

It is clear that for small values of both the dissipation para
eter«, and the noise parameterd, after some transient perio
of time, the phase trajectories of Eq.~7! will be very close to
the level curvesC(E). There are three different families o
periodic orbits separated by the saddle connection~see Fig.
7!. Let us denote those components of the level set
Ci(E) ( i 51,2,3). The overall dynamics of Eq.~2! can be
viewed as a composition of a fast motion along the le
curve Ci(E) and of a slow motion normal to the energ
levels with the possible transitions, for example, fromC1(E)
to C3(E). In this case one can eliminate the fast motion
derive an equation for the slowly varying energyE(t). It is
well known @11# that the fast variables can be eliminate
when there exists a stationary distribution function, indep
dent of small parameters. Let us introduce the following n

FIG. 7. The phase portrait of the conservative system~7!.
0-4
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malized measure corresponding to the fast motion@14# along
the energy level curveCi(E):

r i~u,v !5
1

Ti~E!uV~u,v !u
. ~13!

The equation for the energyE(t) can be derived as follows
Let us multiply Eq.~12! by measure~13!, and integrate along
the level curveCi(E) @14#. The equation forE(t) then takes
the form of a one-dimensional SDE,

dE

dt
5Si~E!2Di~E!1s i~E!

dW

dt
, ~14!

where the rate of energy supply due to the noise is

Si~E!5
d

Ti~E!
E

Ci (E)
S ]2H

]u2
1

]2H

]v2 D uV~u,v !u21ds,

~15!

while the rate of the removal of energy by dissipation can
written as

Di~E!5
«

Ti~E!
E

Ci (E)
S 2

]H

]u
u1

]H

]v
v D uV~u,v !u21ds.

~16!

The intensity of noise is

s i
2~E!5

d

Ti~E!
E

Ci (E)
uV~u,v !uds. ~17!

The details concerning the derivation of the above form
can be found in Ref.@14#. For very small values of« andd
most of the probability is concentrated on the level curv
Ci(E). We have in essence, a deterministic motion, w
speedV along the level curves. In general, we have the s
chastically sustained oscillations for which the energy g
erationSi(E) due to the noise and dissipationDi(E) are in
balance with the stochastic term, which intensitys i(E) is a
function of energy itself.

An extension of stochastic model~2! to the distributed
case involving partial differential equations is now und
consideration. We consider the amplification of the me
field scalar field due to local random perturbations, and s
sequent wave propagation into an unstable state@15,16#. The
purpose is to find the rate at which the local perturbatio
propagate throughout the stochastically unstable state.
ol
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V. CONCLUSIONS AND DISCUSSION

In summary, we have investigated the effects of the ad
tive Gaussian perturbations on a non-normal dynamical s
tem mimicking a laminar-to-turbulent subcritical transitio
both analytically and numerically. We have derived expli
representations for the second moments and found tha
nonlinear dynamical system with a non-normal transient
ear growth is highly sensitive to the presence of weak r
dom perturbations. We have calculated numerically the e
pirical exit probabilities of random trajectories from th
neighborhood of a zero fixed point. We have found that ev
for very small values of the intensity of noise parameterd
51023) the exit probability is close to unity. We have als
found that an increase of the intensity of noise paramete
a decrease of the non-normality parameter, will lead to c
tain qualitative changes in the behavior of the trajectori
This can be interpreted as noise-induced phase transiti
By using the Itoˆ formula and the adiabatic elimination pro
cedure, we have derived a stochastic equation governing
slow evolution of the energy of the system.

We believe that the study of impact of noise on no
normal dynamical system is physically significant since
practical situation random fluctuations may often be w
induce the subcritical transition in fluid flow. The transitio
appears to become essentially random event. The gen
feature of laminar-to-turbulent transition in shear flow is th
it does not have a critical, reproducible Reynolds num
@7,8#. Regarding model~2!, it should be noted that its non
linearity is quite different from the Navier-Stokes one, the
fore, it does not really describe the laminar-to-turbulent tra
sition in fluid flow. However, it gives the general features
such transition involving transient growth, nonlinear, a
stochastic mode interactions. Stochastic dynamic system~2!
is fundamentally different from the deterministic one~1!
with only two degrees of freedom. We can regard Eq.~2! as
aneffectivedynamical system with many degrees of freedo
in which two variablesu andv play the role of order param
eters, while the stochastic noise terms approximate other
grees of freedom and their influence onu and v. Further
research is needed to identify the statistical characteristi
the noise terms in Eq.~2!.
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